Your click decides your fate: Inferring Information Processing and Attrition Behavior from MOOC Video Clickstream Interactions

نویسندگان

  • Tanmay Sinha
  • Patrick Jermann
  • Nan Li
  • Pierre Dillenbourg
چکیده

In this work, we explore video lecture interaction in Massive Open Online Courses (MOOCs), which is central to student learning experience on these educational platforms. As a research contribution, we operationalize video lecture clickstreams of students into cognitively plausible higher level behaviors, and construct a quantitative information processing index, which can aid instructors to better understand MOOC hurdles and reason about unsatisfactory learning outcomes. Our results illustrate how such a metric inspired by cognitive psychology can help answer critical questions regarding students’ engagement, their future click interactions and participation trajectories that lead to in-video & course dropouts. Implications for research and practice are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Your click decides your fate": Leveraging clickstream patterns from MOOC videos to infer students' information processing & attrition behavior

With an expansive and ubiquitously available gold mine of educational data, Massive Open Online courses (MOOCs) have become the an important foci of learning analytics research. The hope is that this new surge of development will bring the vision of equitable access to lifelong learning opportunities within practical reach. MOOCs offer many valuable learning experiences to students, from video ...

متن کامل

Capturing "attrition intensifying" structural traits from didactic interaction sequences of MOOC learners

This work is an attempt to discover hidden structural configurations in learning activity sequences of students in Massive Open Online Courses (MOOCs). Leveraging combined representations of video clickstream interactions and forum activities, we seek to fundamentally understand traits that are predictive of decreasing engagement over time. Grounded in the interdisciplinary field of network sci...

متن کامل

Shared Task on Prediction of Dropout Over Time in Massively Open Online Courses

The shared task on Prediction of Dropout Over Time in MOOCs involves analysis of data from 6 MOOCs offered through Coursera. Data from one MOOC with approximately 30K students was distributed as training data and consisted of discussion forum data (in SQL) and clickstream data (in JSON format). The prediction task was Predicting Attrition Over Time. Based on behavioral data from a week’s worth ...

متن کامل

Predicting Attrition Along the Way: The UIUC Model

Discussion forum and clickstream are two primary data streams that enable mining of student behavior in a massively open online course. A student’s participation in the discussion forum gives direct access to the opinions and concerns of the student. However, the low participation (5-10%) in discussion forums, prompts the modeling of user behavior based on clickstream information. Here we study...

متن کامل

Delving Deeper into MOOC Student Dropout Prediction

In order to obtain reliable accuracy estimates for automatic MOOC dropout predictors, it is important to train and test them in a manner consistent with how they will be used in practice. Yet most prior research on MOOC dropout prediction has measured test accuracy on the same course used for training the classifier, which can lead to overly optimistic accuracy estimates. In order to understand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014